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Abstract
As the capital city of Canada, Ottawa has been experiencing significant impacts of global climate change. How to adapt to 
future climate change is one of the biggest concerns in the city’s built and natural systems. It thus requires a comprehensive 
understanding of possible changes in the local climate of Ottawa, which can hardly be reflected in the coarse outputs of 
Global Climate Models (GCMs). Therefore, a stepwise clustered downscaling (SCD) model is employed in this study to 
help investigate the plausible changes in daily maximum, minimum, and mean temperatures in Ottawa. Outputs from mul-
tiple GCMs under the Representative Concentration Pathways (RCPs) are used as inputs to drive the SCD model in order 
to develop downscaled climate projections. The performance of SCD model is evaluated by comparing the model simula-
tions to the observations (R2 > 0.87) over the historical periods. Future temperature projections and their likely temporal 
trends throughout this century are analyzed in detail to explore the regional variations of global warming in Ottawa, thus to 
provide scientific basis for developing appropriate adaptation strategies at different management levels. The results suggest 
that the City of Ottawa is likely to expect significant increasing trends in temperatures (i.e., 0.18–0.38 °C per decade in 
maximum temperature, 0.16–0.31 °C per decade in minimum temperature, and 0.17–0.34 °C per decade in mean temperature 
under RCP4.5; 0.46–0.54 °C per decade in maximum temperature, 0.37–0.45 °C per decade in minimum temperature, and 
0.42–0.50 °C per decade in mean temperature under RCP8.5) throughout this century.
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1 Introduction

Climate change is a grave concern. With extensive mounted 
evidence over the past decades confirmed by the Intergov-
ernmental Panel on Climate Change (IPCC), the associated 
impacts of climate change have also augmented, affecting 
numerous parts of the world with varied magnitude (IPCC 
2014; OCCIAR 2012). Key sectors such as water resources, 
ecosystems, forestry, fisheries, agriculture, transportation, 

energy, mining, human health, tourism and recreation have 
already been adversely affected by climate change, lead-
ing to economic, social, cultural and environmental losses 
(Adger et al. 2013; Calzadilla et al. 2013; Cherry et al. 2017; 
Delworth and Zeng 2014; Grimm et al. 2016; Justice et al. 
2017; Kløve et al. 2014; Li et al. 2009; OCCIAR 2012; Pecl 
et al. 2017; Rosenzweig et al. 2014; Santos et al. 2017; Wang 
et al. 2018; Wheeler and Von Braun 2013; Yang et al. 2017; 
Zhai et al. 2016). Moreover, previous studies conducted by 
researchers have proven that temperature is rising at different 
time scales over various parts of Canada (Briner et al. 2016; 
Jeong et al. 2016; Nalley et al. 2013; Razavi et al. 2016; 
Wang et al. 2013, 2015a; Way and Viau 2015; Zhang et al. 
2000; Zhou et al. 2017a). Thus, investigating future climate 
change impacts is essential in improving our knowledge of 
climate change at a regional or site-specific scale. It can 
thus advance the understanding of the vulnerability of each 
sector to climate change in terms of the nature of climate 
change, the climatic sensitivity of the region being consid-
ered, and the capacity to adapt to the changes (Ayar et al. 
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2016; Duhan and Pandey 2015; Lemmen and Warren 2004; 
OCCIAR 2012; Quintana-Segui et al. 2016).

Future changes in temperature have been projected by 
different Global Climate Models (GCMs), such as those 
archived in Phase 5 of the Coupled Model Intercomparison 
Project (CMIP5) (Sun et al. 2016; Wang et al. 2016b). How-
ever, due to their coarse spatial resolutions of hundreds of 
kilometres, the simulation results of GCMs under different 
greenhouse gas emission scenarios prescribed by the IPCC 
can hardly be directly adopted as inputs for impact models 
that require accurate estimates of climate information and 
projections for regional or local studies (Ayar et al. 2016; 
Duhan and Pandey 2015; Sachindra et al. 2014; Sun et al. 
2016; Wang et al. 2015a, 2016b). By contrast, statistical 
downscaling methods are frequently adopted to handle such 
a mismatch for assessing the site-specific impacts of climate 
change on environmental features (Wang et al. 2016b; Zhou 
et al. 2018a). Empirical relationships between large-scale 
atmospheric variables (i.e., predictors) of GCMs and the 
climate variables (i.e., predictands) of interest at the regional 
scale are developed in order to estimate daily point-scale 
meteorological series. Moreover, statistical downscaling 
methods are widely used in the projection of local-scale cli-
mate due to their relatively low computational requirements 
and fast simulations; it can also provide site-specific estima-
tions under a range of greenhouse gas emission scenarios 
so long as reliable observations of climate variable of inter-
est are available (Duhan and Pandey 2015; Sun et al. 2016; 
Wang et al. 2015a, 2016b).

In recent years, several climate studies have been carried 
out on future climate change for the Province of Ontario by 
Wang et al. (2014, 2015a, 2015c, 2016a). The analysis from 
the studies have shown that Ontario will be experiencing 
significant warming trends and the annual mean tempera-
ture will vary between 1.6 and 7 °C . However, few stud-
ies have been done in the context of Ottawa. As the capital 
city of Canada, Ottawa has been experiencing significant 
impacts of global climate change, where increases in tem-
perature have already had severe impacts on the city’s built 
and natural systems (OCCIAR 2012). For example, Ottawa 
suffered a higher daily maximum temperature in July and 
August 2012, and such temperature was about 4 °C above 
those in 2004 and 2008.  In addition,  the average daily mini-
mum temperatures in January 2008 and 2012  were about 8 
and 6 °C warmer than that in 2004 (City of Ottawa 2014). 
The annual number of extreme heat days is also expected to 
increase in Ottawa in the future. For instance, the average 
number of days in a year when temperature exceeds 30 °C 
will be doubled by the end of the century. Moreover, the 
number of days in a year when the temperature during the 
night will be higher than 22 °C will increase from 4 per year 
to 18 per year by the end of the century. Furthermore, the 
average annual mean temperature in the City of Ottawa has 

increased over the last century by 1.7 °C (City of Ottawa 
2014; Government of Canada 2015). In response to these 
changes and the increasing concerns for the environment, the 
City of Ottawa has prepared a number of plans in order to 
enhance its resiliency to climate change, and serious actions 
have been taken place to prepare for the future impacts of 
climate change (Government of Ontario 2016). The imple-
mentation of such actions/plans depends on reliable future 
projections of temperature for the City of Ottawa.

Therefore, the objective of this research is to develop a 
stepwise clustered downscaling (SCD) model to help inves-
tigate the plausible changes in daily maximum, minimum, 
and mean temperatures in Ottawa. The ability of the SCD 
model to statistically downscale three temperature vari-
ables of interest will be examined; how temperature vari-
ables would likely to change in the future for the City of 
Ottawa (as a typical northern city in North America) will be 
revealed as well. In detail, three GCMs simulated data (i.e., 
CanESM2, GFDL-ESM2M, and IPSL-CM5A-LR) under 
two Representative Concentration Pathways (i.e., RCP4.5 
and RCP8.5) will be statistically downscaled through the 
SCD model. Three temperature variables including maxi-
mum, minimum, and mean temperatures (i.e., Tmax, Tmin, 
and Tmean) are used for this analysis. Future trends of the 
projected temperatures will be evaluated. The magnitudes 
of expected changes in the three temperature variables will 
be quantified. The results from this research can provide 
direct inputs for impacts assessment in the City of Ottawa, 
and consequently help explore the possible adaptation plans 
against the changing climate at local scales.

2  Study area and data

As shown in Fig. 1, the City of Ottawa is situated on the 
south shore of the Ottawa River, at confluence of the 
Gatineau River, the Rideau River and the Ottawa River (lati-
tude 45°22′N and longitude 75°43′W) (Mohareb et al. 2008). 
Ottawa is covering an area of about 2760 km2, with an esti-
mated population of approximately 934,243 according to 
Statistics Canada (Statistics Canada 2017), and it is ranked 
the fourth-largest city in Canada (City of Ottawa 2017). 
Ottawa possesses a humid continental climate, with four 
distinct seasons. It is known for its temperatures extreme 
and harsh climate (Martin and Ballamingie 2016).

A record of observed daily temperature related variables 
from the Ottawa International Airport Weather Station (lati-
tude 45°19′N and longitude 75°40′W) are procured from 
the Environment and Natural Resources (Government of 
Canada 2015). The observed temperature data are down-
loaded for the period of 1940–2011. These variables include 
daily maximum temperature (i.e., Tmax), daily minimum 
temperature (i.e., Tmin), and daily mean temperature (i.e., 
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Tmean). Quality of the data was checked prior to conduct the 
analysis, such as missing data detection. For example, miss-
ing data was detected and interpolation was performed to fill 
in the gaps of the missing data. In order to provide inputs 
into the SCD model, as well as to construct the relationship 
between GCM outputs with the observed data, daily mean 
atmospheric variables at different levels (e.g., pressure level, 
near-surface level, and mean sea level) are downloaded from 
the North American Regional Reanalysis (NARR) dataset 
produced by the National Centers for Environment and Pre-
diction (NCEP) (NCEP 2016). The data has a resolution of 
32 km and are extracted for the period of 1979–2015.

Daily outputs from three GCMs (i.e., CanESM2, 
GFDL-ESM2M, and IPSL-CM5A-LR) are downloaded 
from CMIP5 dataset archive (Table 1). The data comprise 

present-day (i.e., historical) and future simulations forced 
by four emission scenarios, namely RCP2.6, RCP4.5, 
RCP6.0, and RCP8.5. Among them, RCP4.5 is a scenario in 
which the radiative forcing is stabilized in the year of 2100 
(Thomson et al. 2011), whereas RCP8.5 is a scenario which 
assumes high population and slow income growth, moder-
ate rates of technology development, high energy demand 
and greenhouse gas emissions in absence of climate change 
policies (Riahi et al. 2011). Therefore, in this study, the daily 
gridded data simulated by the three GCMs under historical, 
RCP4.5 and RCP8.5 scenarios are extracted for the periods 
of 1979–2004 and 2006–2099 for the City of Ottawa. The 
NARR data are then re-gridded to the coarsest GCM (i.e., 
IPSL-CM5R-LR) resolution using bilinear interpolation 
method in order to develop (e.g., calibrate and validate) the 

Fig. 1  Study area

Table 1  Global climate models 
considered in this study

GCM model Institute Resolution (deg)

CanESM2 Canadian Centre for Climate Modelling and Analysis, 
Canada

2.79 × 2.81

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory, USA 2.02 × 2.5
IPSL-CM5A-LR Institut Pierre-Simon Laplace, France 1.89 × 3.75
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stepwise clustered downscaling (SCD) model. The extracted 
data from the three GCMs are then treated as inputs into the 
developed SCD model.

3  Stepwise clustered downscaling model

The stepwise clustered downscaling (SCD) model was 
developed based on the stepwise cluster analysis (SCA) 
method introduced by Huang (1992). The SCA method has 
been widely used in a number of studies on climatic change, 
hydrology, and environmental pollutions (Fan et al. 2015, 
2016; Huang et al. 2006; Li et al. 2015; Qin et al. 2007; 
Wang et al. 2013, 2015a, b; Zhuang et al. 2016). The SCA 
method is a multivariate statistical technology designed for 
capturing discrete and nonlinear relationship between local-
scale predictors and large-scale predictands; it also has the 
ability to consider complex interactions between predictors 
and predictands as a cluster tree, without requiring assump-
tions of functional relationship (Fan et al. 2015, 2016; Li 
et al. 2015; Qin et al. 2007; Sun et al. 2009; Wang et al. 
2012, 2013). Furthermore, the significance levels of differ-
ent branches can be clearly delineated through SCA and has 
been proven to be an effective forecasting method for various 
resources and environmental systems (Fan et al. 2015, 2016; 
Li et al. 2015; Qin et al. 2007; Sun et al. 2009; Wang et al. 
2012, 2013). A flowchart of the SCA method is presented 
in Fig. 2.

The essence of the SCA method is to form a classifica-
tion tree based on a series of cutting or mergence processes 
according to given statistical criteria (Sun et al. 2009). Such 
a classification tree can be adopted to specify the inherent 
complex relationship between predictors and predictands. 
Thus, new values of predictands can be predicted for any 
new input of the predictors. In this study, the input and 
output data for the the developed SCD system should be 
identified first. Let x = x1, x2,…, xi represent a group of large-
scale atmospheric variables and y = y1, y2,…, yj represent a 
group of observed temperature variables. There are N sam-
ples for the SCD model; therefore, n series of large-scale 
atmospheric variables and local-scale surface variables can 
be obtained, which can be formed as matrices X = (x)n×i, 
Y = (y)n×j. As for temperature prediction of a specific site 
in this study, the predictands are maximum, minimum, and 
mean temperatures (i.e., Tmax, Tmin, Tmean), and the pre-
dictors include large-scale atmospheric variables such as 
temperature, specific humidity, and geopotential height at 
pressure level. Once the training set is formed, a cluster tree 
can be obtained through a series of cutting and mergence 
actions according to the F test based Wilk’s likelihood-ratio 
criterion (Huang et al. 2006; Li et al. 2015; Rao 1952; Wang 
et al. 2013; Wilks 1962). Based on such criterion, the sample 
set of dependent variables is first cut into two subsets and 

then grouped the sample sets into one for the sample clas-
sification. Such a cutting and mergence action is performed 
sequentially until no cluster can be cut and merged. There-
fore, the training procedure is completed and prediction 
can be performed. Huang et al. (2006) has provided more 
detailed descriptions on the SCA method.

A critical aspect related to the application of statisti-
cal downscaling model is the selection of predictors (i.e., 
input variables). According to previous studies, a number 
of large-scale predictor variables from the NARR reanalysis 
dataset for predicting local-scale daily temperature variables 
of interest (i.e., Tmax, Tmin, and Tmean) are screened out 
based on correlation analysis between the predictors and the 
predictands (Ayar et al. 2016; Fan et al. 2013; Mtongori 
et al. 2016; Onyutha et al. 2016; Pierce et al. 2013; Su et al. 
2016; Teutschbein et al. 2011; Trzaska and Schnarr 2014; 
Wang et al. 2013, 2015a, 2016b; Wilby et al. 2004; Wilby 
and Wigley 1997; Zhou et al. 2017b). To provide a better 
mutual comparability of results, same number of predictors 
are selected from the three GCMs and are then used to build 
the SCD model. The 21 potential predictors selected for this 
study include: specific humidity at 850, 700, and 500 hPa 
pressure levels; air temperature at 850, 700, 500, 250, 10 hPa 
pressure levels; eastward wind at 100, 50, and 10 hPa; geo-
potential height at 800, 700, 500, 250, 100, 50, and 10 hPa; 

Fig. 2  Flowchart of stepwise cluster analysis
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surface temperature, near-surface air temperature at 2 m, 
and near-surface specific humidity at 2 m (Table 2). Once 
the screening process is done, training of the suitable SCD 
model can be taken place.

For the development of the SCD model, the observed data 
for Tmax, Tmin, and Tmean for the City of Ottawa, as well 
as the selected NARR reanalysis data are split into two sets. 
The first set, containing potential selected NARR predictors 
and observed temperature variables’ data from 1979 to 1989, 
is allocated to the calibration of the SCD model. The remain-
ing data from 1990 to 2004 is used for the validation of 
the model. The performance of the SCD model is evaluated 
quantitatively through R2 (i.e., coefficient of determination).

Daily gridded data simulated by the three GCMs are 
then used as inputs into the validated SCD model. Specifi-
cally, the data for the selected predictors shown in Table 2 
from CanESM2, GFDL-ESM2M, and IPSL-CM5R-LR are 
extracted to drive the SCD model. Due to varied timespan 
of all the datasets, including NARR reanalysis, CanESM2, 
GFDL-ESM2M, and IPSL-CM5R-LR, their overlap period 
is extracted (i.e., 1979–2004). Projections of Tmax, Tmin 
and Tmean are produced by feeding the outputs of the three 
GCMs individually into the developed SCD model. In detail, 
historical data (1979–2004) are input into the SCD model to 
generate the simulated values of station-based Tmax, Tmin, 
and Tmean during the present day; results are then compared 

to the observed data for validation purposes. Once the repro-
duced results are consistent with the observed data, projec-
tions of the three temperature variables by the three GCMs 
under RCP4.5 and RCP8.5 are fed into the SCD model to 
project future climate for the City of Ottawa.

The performance of the SCD model in the validation peri-
ods are assessed numerically and graphically. The numerical 
assessment of the model is performed by comparing the sta-
tistics (i.e., R2) of the three temperature variables reproduced 
by the SCD model with the observation. Scatter plots and 
time-series plots are used to assist in visual representation of 
the comparison between model predictions and observations.

4  Results and discussions

4.1  Model calibration and validation

The downscaling results are calibrated and validated with 
the NARR dataset according to the correspondence of their 
time series to the observations. The validation results infer 
that the SCD model is well developed. Figure 3 shows the 
validation results of the downscaling model. A 15-year 
monthly average scatter plots are presented for the observed 
temperature variables (i.e., Tmax, Tmin and Tmean) and 
those reproduced by the downscaling model using NARR 
data as inputs during 1990–2004. During the validation 
phase, it is evident that the NARR trained SCD model shows 
outstanding ability (R2 > 0.8209) in reproducing observed 
Tmax, Tmin, and Tmean.

In order to validate the reproduced results, the statistical 
value of R2 for the monthly observed data (i.e., Tmax, Tmin, 
Tmean) and those reproduced from the SCD model for the 
City of Ottawa is calculated for the period of 1981–2000 
(Fig.  4). It can be concluded that the SCD model pre-
sents outstanding performance in reproducing the 20-year 
monthly Tmax, Tmin and Tmean for the City of Ottawa. The 
maximum R2 of 0.8818 is associated with the reproduced 
Tmin from CanESM2; the minimum R2 of 0.8731 is with the 
reproduced Tmax from IPSL-CM5R-LR. The performance 
of the SCD model in reproducing the present-day climate 
from the three GCMs is further examined by comparing 
monthly mean of the model outputs to the observed Tmax, 
Tmin and Tmean downloaded from Environment and Natu-
ral Resources (Government of Canada 2015). Figure 5 shows 
the 20-year (1981–2000) monthly mean time series plot for 
the observed and downscaled present-day Tmax, Tmin and 
Tmean. Although results from the SCD model possess simi-
lar trends and captures the seasonal variation of temperatures 
very well, it is obvious that the ability of them in capturing 
present-day temperature variables varies. In detail, Tmax, 
Tmin and Tmean are well captured by the downscaled 
results from IPSL-CM5R-LR (from August to December 

Table 2  Potential NARR predictors selected for Tmax, Tmin, and 
Tmean

NARR variable selected Unit Pressure level (hPa)

Specific humidity kg/kg 850
700
500

Air temperature K 850
700
500
250
10

Eastward wind m/s 100
50
10

Geopotential height m 850
700
500
250
100
50
10

Surface temperature K Surface
Near-surface air temperature K 2 m
Near-surface specific humidity kg/kg 2 m
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Fig. 3  Comparison between observed and NARR reproduced Tmax, Tmin, and Tmean, 1990–2004

Fig. 4  Validation results for multi-year monthly mean of Tmax, Tmin, and Tmean for the City of Ottawa
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and from January to February) and GFDL-ESM2M (from 
July to November and from February to March). As oppose 
to IPSL-CM5R-LR and GFDL-ESM2M, Tmax, Tmin and 
Tmean are well captured by downscaling CanESM2 outputs 
from March to May. As a result, it can be concluded that the 

under- and over-estimations from the downscaled outputs 
are mainly due to model uncertainties because models are 
constructed based on physical and numerical formulations, 
and different parameterization used in the climate models 
wil respond differently to climate change.

Fig. 5  Monthly mean for the observed and downscaled present-day Tmax, Tmin and Tmean from CanESM2, GFDL-ESM2M, and IPSL-CM5R-
LR, 1981–2000

Fig. 6  Projected monthly temperature (Tmax, Tmin, and Tmean) for the City of Ottawa from 2007 to 2099 under RCP4.5



 Y. Zhai et al.

1 3

According to Figs. 3, 4 and 5, it is obvious that the repro-
duced data from the SCD model with NARR reanalysis data 
as input is much more consistent with the observations com-
pared to those downscaled from the three GCMs. This is 
mainly due to the fact that the quality of NARR reanalysis 
data is much higher than that of the GCMs outputs. Since the 
NARR reanalysis data are quality controlled and corrected 
against observations, they are inherently more accurate than 
any GCM output (Kalnay et al. 1996; Sachindra et al. 2014). 
As oppose to the NARR reanalysis dataset, the GCMs out-
puts are often associated with higher degree of uncertainty. 
In other words, the high resolution model used by NARR 
dataset along with the associated assimilation system have 
led the NARR data set to be more accurate than that of the 
GCMs’; and the model uncertainty of the climate models are 
often associated with different parameterization used to pre-
sent the real-world climate system. Therefore, it is essential 
to present how the SCD model would reproduce the present-
day temperature variables with multiple GCMs outputs since 

their outputs pertaining to future climate would be used for 
the projections of local-scale temperature variables into the 
future.

4.2  Future temperature projections

Projections from CanESM2, GFDL-ESM2M, and IPSL-
CM5R-LR under RCP4.5 and RCP8.5 are resulted from the 
SCD model. The projected maximum, minimum and mean 
temperatures, as well as their changes for the City of Ottawa 
are shown in Figs. 6, 7, 8, 9, 10 and 11.  Figures 6 and 7 pre-
sent the projected monthly mean Tmax, Tmin, and Tmean 
for the City of Ottawa. A smoothed red bold line shows how 
maximum, minimum, and mean temperatures would likely 
to change under RCP4.5 and RCP8.5; such a trend line for 
the monthly time series are fitted using the lowess method. 
It is obvious that the increasing trends are consistent, indi-
cating that Ottawa will be experiencing a warmer climate 
in the future. For instance, CanESM2 presents the highest 

Fig. 7  Projected monthly temperature (Tmax, Tmin, and Tmean) for the City of Ottawa from 2007 to 2099 under RCP8.5
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increasing trends of the maximum, minimum and mean 
temperatures for the City of Ottawa. Furthermore, the trend 
of monthly and decadal means of Tmax, Tmin and Tmean 
are investigated through Mann Kendall test and Sen’s slope 
estimator test (Table 3), which have been widely used in 
the studies of climatological time series (Duhan and Pan-
dey 2015; Kendall 1970; Mann 1945; Sen 1968; Vikhamar-
Schuler et al. 2016). It is quite obvious that most monthly 
and decadal trends are significant with p values less than 
0.001. During the twenty-first century, the magnitude of 
Tmax, Tmin and Tmean varies. For instance, the magni-
tude of the projected Tmax for CanESM2, GFDL-ESM2M, 
and IPSL-CM5R-LR are 0.38 °C, 0.18 °C, and 0.31 °C per 
decade under RCP4.5, whereas these values have increased 
to 0.54 °C, 0.49 °C, and 0.46 °C per decade under RCP8.5.

The plotted time series of annual and seasonal mean 
of the three temperature variables for the City of Ottawa 
are adopted to further describe their near- and long-term 
trends (Figs. 8 and 9). As shown in Fig. 8, it is suggested 
that the Tmax, Tmin, and Tmean are continuing to increase, 
which is consistent with the previous results that Ottawa 
will be experiencing a warmer climate in the future. Projec-
tion results from CanESM2 always hold the largest values 
among the three GCMs. However, it is found that during 
summer under RCP4.5, results from GFDL-ESM2M show a 
slight decrease in the trends of the projected temperatures 
at the end of the century, while such a decrease is also 
found with the projected temperatures from IPSL-CM5R-
LR during autumn. Similar increasing trend is further dis-
covered for most of the seasons under RCP8.5 (Fig. 9), 
and CanESM2 shows the highest increasing trend. The 
magnitude of such an increase is more noticeable compared 
to those under RCP4.5 (Fig. 8). However, the projected val-
ues of the three temperature variables from IPSL-CM5R-LR 
reveal a more noticeable decreasing trend during summer 
after the year of 2080 (Fig. 9). 

Moreover, results have shown that variability exists 
in the future projections of the three temperature vari-
ables; such variability in the temperature trends is differ-
ent among models and the variability is expected to be 
more significant in winter. The resulted variability can 
be explained by uncertainty in climate projections due to 
the following three aspects: 1) uncertainty in emissions 
scenario, 2) uncertainty in model, and 3) natural variabil-
ity (Deser et al. 2012a). Emission scenario uncertainty is 
often related to the level of our knowledge of the exter-
nal factors that influences the climate system; the model 
uncertainty is due to the fact that different responses from 
different models can be resulted because of different physi-
cal and numerical formulations adopted by the climate 
models; uncertainty from natural variability is associated 
with the internal variability to the climate system, which 
poses limits to climate predictability because the inherent 
natural force of the climate fluctuations beyond years or 
even decades are hard to predict (Deser et al. 2012a, b; 
Hawkins and Sutton 2009, 2011; Zhou et al. 2018b).

The projections for maximum, minimum, and mean 
temperatures are then sliced into three 20-year periods 
(2015–2034, 2035–2054, 2075–2094) under RCP4.5 and 
RCP8.5 (Figs. 10, 11, and 12); thus, near- and long-term 
monthly projected temperature changes for the City of 
Ottawa relative to the historical observation (1981–2000) 
can be understood. The annual mean of maximum, mini-
mum, and mean temperatures under the two RCP scenar-
ios are computed for 2015–2034, 2035–2054, 2075–2094 
(i.e., 2030s, 2050s, and 2080s); their projected changes 
relative to the historical period (1981–2000) are presented 
in Figs. 10, 11, and 12. Results show that the projected 
Tmax, Tmin and Tmean are increasing to the end of the 
century under RCP4.5 and RCP8.5. For instance, projected 
annual changes  (Fig. 10) of Tmax from CanESM2 will 
result in an increase of 3.96 °C, 5.31 °C, and 6.07 °C during 

Table 3  Monthly and decadal trends in temperature for the City of Ottawa in the twenty-first century (2007–2099)

GCMs Temperature RCP4.5 RCP8.5

Monthly Decadal Monthly Decadal

MK p value Sen’s slope 
(°C/month)

MK p value Sen’s slope 
(°C/decade)

MK p value Sen’s slope 
(°C/month)

MK p value Sen’s slope 
(°C/decade)

CanESM2 Tmax < 0.001 0.0028 < 0.002 0.376 < 0.001 0.0039 < 0.001 0.540
Tmin < 0.001 0.0026 < 0.002 0.306 < 0.001 0.0034 < 0.001 0.451
Tmean < 0.001 0.0027 < 0.002 0.339 < 0.001 0.0036 < 0.001 0.504

GFDL-ESM2M Tmax < 0.050 0.0016 < 0.050 0.178 < 0.001 0.0043 < 0.001 0.488
Tmin < 0.050 0.0016 < 0.050 0.160 < 0.001 0.0039 < 0.001 0.449
Tmean < 0.050 0.0016 < 0.050 0.168 < 0.001 0.0041 < 0.001 0.466

IPSL-CM5R-LR Tmax < 0.001 0.0027 < 0.002 0.307 < 0.001 0.0043 < 0.005 0.460
Tmin < 0.002 0.0025 < 0.001 0.270 < 0.001 0.0036 < 0.005 0.365
Tmean < 0.001 0.0026 < 0.001 0.289 < 0.001 0.0039 < 0.005 0.419
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2030s, 2050s, and 2080s under RCP4.5, whereas these num-
bers will augment to 4.43 °C, 5.82 °C, and 7.56 °C under 
RCP8.5. Unlike CanESM2 and GFDL-ESM2M, projected 
changes from IPSL-CM5R-LR show a slight decrease dur-
ing the 2030s under both RCPs. Moreover, Fig. 11 shows 
the projected monthly maximum, minimum and mean tem-
perature changes under RCP4.5 for the 2080s (2075–2094), 
relative to the historical period (1981–2000) for the City of 
Ottawa. Consistent increases in maximum, minimum and 
mean temperatures are found for CanESM2, while other 

two GCMs (i.e., GFDL-ESM2M and IPSL-CM5R-LR) 
present some decreases during the months from March to 
June. In January, CanESM2 has  the  largest increases in the 
projected changes in Tmax (8.72 °C), Tmin (9.54 °C) and 
Tmean (9.15 °C), respectively. However, it is interesting to 
reveal a phenomenon that the projected increase in tempera-
tures during winter (December, January, and February) for 
the City of Ottawa is more prominent compared to the pro-
jected increase in the values for other seasons (i.e., Spring, 
Summer, and Autumn). Similar projected increasing trends 

Fig. 8  Projected temperature (Tmax, Tmin, and Tmean) for annual and seasonal time series of the City of Ottawa under RCP4.5
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are also revealed for the monthly mean of maximum, mini-
mum and mean temperatures at the end of the century under 
RCP8.5 (Fig. 12), where the projected increased values are 
more significant compared to those under RCP4.5. Although 
the largest projected increases in maximum, minimum and 
mean temperatures under RCP8.5 is found in January for 
CanESM2, slight decreases in the projected maximum, mini-
mum and mean temperature are found only from March to 
May for GFDL-ESM2M and IPSL-CM5R-LR. Moreover, it 
has also been noticeable that monthly mean of the minimum 

temperature will increase at a slightly higher rate than that 
of the maximum temperature, and this is true for the pro-
jected results from all the three GCMs under RCP4.5 and 
RCP8.5. Therefore, it can be concluded that although GCMs 
show different projections due to their inherent system com-
plexities, one cannot ignore the fact that significant warming 
trends are very likely to be expected in the City of Ottawa 
throughout this century.

Fig. 9  Projected temperature (Tmax, Tmin, and Tmean) for annual and seasonal time series of the City of Ottawa under RCP8.5
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5  Conclusions

The common practice of developing a statistical downs-
caling model is to conduct calibration and validation with 
some historical reanalysis datasets of the climate; then, site-
specific future projections can be produced by introducing 
outputs from GCMs, pertaining to future greenhouse gas 
emission scenarios (i.e., RCP4.5 and RCP8.5). In this study, 
a stepwise clustered downscaling (SCD) model was devel-
oped to downscale projected temperature changes in terms of 
daily maximum, minimum, and mean temperature variables 
from multiple GCMs (i.e., CanESM2,  GFDL-ESM2M, and 
IPSL-CM5R-LR). The performance of the SCD model is 
then investigated in order to generate future temperature pro-
jections for a site-specific location (i.e., Ottawa).

By analyzing the overall trends of the projected three 
temperature variables (i.e., Tmax, Tmin, and Tmean), it is 
discovered that Ottawa will be experiencing a continuous 
increasing trend in the projected temperatures during this 
century. Moreover, the discovered variability in future pro-
jections of the temperature trend is different among models 

and such variability is expected to be more significant in 
winter time. The future climate change in terms of the pro-
jected changes in temperature in the City of Ottawa were 
analyzed under both RCPs (i.e., RCP4.5 and RCP8.5) and 
over three time slices (i.e., 2015-2034, 2035-2054, and 
2075-2094). Under RCP4.5, trends of 0.38 °C, 0.18 °C, 
and 0.31 °C per decade in maximum temperature have been 
resulted from CanESM2, GFDL-ESM2M, and IPSL-CM5R-
LR, respectively; while minimum temperature trends range 
from 0.16 °C to 0.31 °C per decade, and mean temperature 
trends range from 0.17 °C to 0.34 °C per decade. RCP8.5 
even possesses higher trends compared to RCP4.5, with the 
trends of maximum temperature of the three GCMs ranging 
from 0.46 °C to 0.54 °C per decade, minimum temperature 
ranging from 0.37 °C to 0.45 °C per decade, and mean tem-
perature ranging from 0.42 °C to 0.50 °C per decade dur-
ing this century. In accordance to the previous findings, the 
highest trends have been resulted from CanESM2, which 
in turn brings out attention that results from only one indi-
vidual climate model are inadequate to represent the cli-
mate system due to its inherent complexity. Therefore, an 

Fig. 10  Projected changes of annual mean Tmax, Tmin, and Tmean under RCP4.5 and RCP8.5 for the City of Ottawa
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ensemble approach is often adopted as an effective way to 
study climate change in the future in order to provide reliable 
information towards climate adaptation and mitigation. The 
ensemble approach is widely accepted as an effective way to 
explore the range of projections from multiple GCMs and/
or RCMs modeling results because results from one individ-
ual climate model are not adequate enough to describe the 
complexity in a climate system (Jeong et al. 2016; Tebaldi 
et al. 2005; Yang et al. 2012; Wang et al. 2016a). Therefore, 
through an ensemble approach, reliable climate change sce-
narios can be provided for the assessment of plausible effects 
of future climate change (Wang et al. 2015c). 

Overall, this study presents an attempt in revealing an 
increasing trend along with the increased changes in tem-
peratures for the City of Ottawa through the SCD model. 
Results suggests that such a downscaling model have demon-
strated desired performance in the projections of maximum, 
minimum, and mean temperatures for the City of Ottawa. 
Moreover, comparisons of the projections among the three 
GCMs provide valuable information on how well the GCM 
models describe a long-term behavior of temperatures. Fur-
ther improvements can be made on conducting an ensem-
ble analysis and developing coupled dynamical–statistical 
downscaling method regarding projected future changes 

Fig. 11  Projected monthly changes in Tmax, Tmin, and Tmean for the City of Ottawa during 2080s under RCP4.5
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in temperature variables for the City of Ottawa. Moreover, 
projected changes in precipitation and their extremes will 
also be analyzed through an ensemble means at local scale 
to explore the role of natural variability in future climate in 
the City of Ottawa. 
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