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cities in Ontario are likely to suffer positive changes in 
annual precipitation in 2030, 2050, and 2080 s in com-
parison to the baseline observations. This may suggest 
that the whole province is likely to gain more precipitation 
throughout the twenty-first century in response to global 
warming. The analyses on the projections of seasonal pre-
cipitation further demonstrate that the entire province is 
likely to receive more precipitation in winter, spring, and 
autumn throughout this century while summer precipita-
tion is only likely to increase slightly in 2030 s and would 
decrease gradually afterwards. However, because the mag-
nitude of projected decrease in summer precipitation is rel-
atively small in comparison with the anticipated increases 
in other three seasons, the annual precipitation over Ontario 
is likely to suffer a progressive increase throughout the 
twenty-first century (by 7.0 % in 2030 s, 9.5 % in 2050 s, 
and 12.6 % in 2080 s). Besides, the degree of uncertainty 
for precipitation projections is analyzed. The results sug-
gest that future changes in spring precipitation show higher 
degree of uncertainty than other seasons, resulting in more 
uncertainties in annual precipitation projections.

Keywords Global warming · Regional climate change · 
Precipitation projections · Climate ensemble · Ontario

1 Introduction

Global warming caused by the increase in greenhouse gas 
concentrations is likely to alter the planet’s hydrologic 
cycle, and would further lead to substantial changes in 
the amount, intensity, and spatial distribution of precipita-
tion (Allan and Soden 2008; Chou et al. 2009; Fowler and 
Hennessy 1995; Hulme et al. 1998; Trenberth 2011; Wentz 
et al. 2007). These changes may pose a number of serious 

Abstract In this study, probabilistic projections of pre-
cipitation for the Province of Ontario are developed through 
a regional climate model ensemble to help investigate how 
global warming would affect its local climate. The PRECIS 
regional climate modeling system is employed to perform 
ensemble simulations, driven by a set of boundary condi-
tions from a HadCM3-based perturbed-physics ensemble. 
The PRECIS ensemble simulations are fed into a Bayesian 
hierarchical model to quantify uncertain factors affecting 
the resulting projections of precipitation and thus generate 
probabilistic precipitation changes at grid point scales. Fol-
lowing that, reliable precipitation projections throughout 
the twenty-first century are developed for the entire prov-
ince by applying the probabilistic changes to the observed 
precipitation. The results show that the vast majority of 
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risks on natural and human systems on all continents and 
in the ocean (IPCC 2014; Jordan et al. 2014). For exam-
ple, changing precipitation or melting snow or ice are alter-
ing hydrological systems in many regions and may further 
affect water resources in terms of quantity and quality 
(e.g., Akhtar et al. 2008; Baron et al. 2013; Christensen 
and Lettenmaier 2007; Grafton et al. 2013; Ling et al. 
2014; Paerl and Paul 2012; Piao et al. 2010; Wang et al. 
2014a), extreme weather events (e.g., floods and droughts) 
are occurring more frequent in recent years and may lead 
to severe and irreversible impacts on human and ecosys-
tems (e.g., Aldous et al. 2011; Dai 2011; Hirabayashi et al. 
2013; Ma et al. 2014; Marengo et al. 2013; Schiermeier 
2011; Wang et al. 2014d; Yang et al. 2012). Assessing the 
potential impacts of global warming on precipitation thus 
becomes one of the major concerns for decision makers and 
resources managers to help develop scientifically-informed 
policies or strategies against the changing climate (Cross 
et al. 2012; Ford et al. 2011; Hoffmann and Sgrò 2011).

Precipitation is highly spatially variable because it is 
not only affected by the global hydrologic cycle, but also 
influenced by local topography, land cover, inland waters, 
coastlines, and many other regional details (Bárdossy 
and Pegram 2013; Sanchez-Moreno et al. 2014; Sena-
tore et al. 2014; Um et al. 2011). Global climate models 
(GCMs) can hardly account for the spatial variability 
because they usually run at the global scale with a coarse 
resolution of 150-300 km. Further downscaling to the 
GCM outputs is required to generate future climate pro-
jections at finer resolutions for supporting climate change 
impact assessment at regional scales (Wang et al. 2014c). 
In general, downscaling techniques are classified into sta-
tistical downscaling and dynamical downscaling. Statisti-
cal downscaling involves the development of quantitative 
relationships between large-scale atmospheric variables 
and local weather variables such as temperature and pre-
cipitation (Hewitson and Crane 1996; Wilby and Wig-
ley 1997). Owing to its easier implementation and lower 
computational requirements than dynamical downscaling, 
statistical downscaling has been widely used in climate 
research community (e.g., Abatzoglou and Brown 2012; 
Feddersen and Andersen 2005; He et al. 2011; Korhonen 
et al. 2014; Themeßl et al. 2012; Wang et al. 2013). But, 
statistical downscaling methods have many limitations and 
are subject to a number of widely-known assumptions on 
the underlying probabilistic model, parameter stability, as 
well as temporal dependence which are not always satisfied 
in the context of climate change (Estrada et al. 2013; Wang 
et al. 2014e). In contrast, dynamical downscaling is usually 
implemented by nesting fine-resolution regional climate 
models (RCMs) into GCMs in order to account for the sub-
GCM grid scale processes in a physically-based way (Feser 
et al. 2011). RCMs are developed with the same laws of 

physics as described in GCMs and can be used to simulate 
the local climate system with provision of a large num-
ber of climate variables at fine spatial resolutions (in the 
order of 10 km). Dynamical downscaling through RCMs 
thus have received increasing attention of climate impact 
researchers in the past few years (e.g., Heinrich et al. 2014; 
Larsen et al. 2014; Nikulin et al. 2012; Pielke and Wilby 
2012; Teutschbein and Seibert 2012).

As the biggest economy in Canada, the Province of 
Ontario is experiencing many consequences caused by 
or associated with climate change, such as frequent and 
intense heat waves, floods, droughts, and wind gust (MoE 
2011a, b). Planning of mitigation and adaptation strategies 
against the changing climate, which requires a better under-
standing of future climate outcomes over the province in 
the context of global warming, is of great interest to local 
policy makers, stakeholders, and development practition-
ers. Therefore, as an extension of our previous efforts on 
probabilistic temperature projections (Wang et al. 2014b, 
e, 2015), this paper aims to develop high-resolution pre-
cipitation projections for the Province of Ontario through 
a regional climate model ensemble to help investigate the 
potential impacts of global warming on precipitation at 
regional scales. Specifically, we will first employ the PRE-
CIS model to perform ensemble simulations of the local 
climate over Ontario, driven by a set of boundary condi-
tions from a HadCM3-based perturbed-physics ensemble. 
The PRECIS ensemble simulations will be then fed into a 
Bayesian hierarchical model (Wang et al. 2014b) to quan-
tify uncertain factors affecting the resulting projections of 
precipitation and thus generate probabilistic precipitation 
changes at grid point scales. By applying the probabilistic 
changes to the observed precipitation, we will develop reli-
able precipitation projections throughout the twenty-first 
century for the entire province to provide helpful informa-
tion for assessing the potential effects of climate change in 
the context of Ontario.

2  Methodology

2.1  Model description and experimental design

In this study, we use the PRECIS regional climate mod-
eling system developed at the UK Met Office Hadley 
Centre to perform high-resolution climate simulations for 
the Province of Ontario. The PRECIS is a flexible, easy-
to-use and computationally inexpensive RCM designed 
to provide detailed climate scenarios. It can be applied 
easily to any area of the globe to generate detailed cli-
mate change projections, with the provision of a simple 
user interface as well as a visualization and data-process-
ing package. The PRECIS is able to run at two different 
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horizontal resolutions: 0.44° (approximately 50 km) and 
0.22° (approximately 25 km), with 19 vertical levels using 
a hybrid coordinate system (Wilson et al. 2011). The PRE-
CIS is a comprehensive physical model with considera-
tion of both the atmosphere and land surface components 
of the climate system, and thus is capable of representing 
the important physical processes within the climate system, 
such as dynamical flow, atmospheric sulphur cycle, clouds 
and precipitation, radiative processes, and the interactions 
between land surface and deep soil (Jones et al. 2004).

The PRECIS model requires surface boundary con-
ditions and lateral boundary conditions at its edges, but 
there is no prescribed constant at the upper boundary of 
the model (except for the input of solar radiation). Sur-
face boundary conditions are only required over ocean and 
inland water where the model needs timeseries of surface 
temperatures and ice extents. Lateral boundary conditions 
provide the necessary dynamical atmospheric informa-
tion at the latitudinal and longitudinal edges of the model 
domain (e.g., surface pressure, winds, temperature, and 
humidity). Lateral boundary conditions are updated every 
6 h in the PRECIS model while surface boundary con-
ditions are updated every day (Jones et al. 2004). In this 
paper, we derive boundary conditions from a HadCM3-
based perturbed physics ensemble (known as QUMP, avail-
able at: http://www.metoffice.gov.uk/precis/qump) under 
the SRES A1B emission scenario to drive the PRECIS 
simulations over Ontario. The QUMP consists of 17 mem-
bers and is developed by the Hadley Centre to allow users 
to generate an ensemble of high-resolution regional climate 
projections (Collins et al. 2006). Downscaling the 17-mem-
ber PPE ensemble with PRECIS would require very large 
inputs of computing resources, data storage, and data anal-
yses. In order to explore the range of uncertainties while 
minimizing these requirements, we select 5 members (i.e., 
HadCM3Q0, Q3, Q10, Q13, and Q15) from the QUMP 
ensemble according to the Hadley Centre’s recommenda-
tion (McSweeney and Jones 2010). HadCM3Q0 is first 
selected as it is the standard, unperturbed model using the 
original parameter settings as applied in the atmospheric 
component of HadCM3. Selection of the remaining four 
members is based on: (a) their performances in simulating 
the climate of the present day, to ensure that the selected 
members can represent the climate of the region of interest 
reasonably, and (b) the range or spread of future outcomes, 
in order to ensure that the selected members can sample the 
full range of outcomes simulated by the 17-member ensem-
ble (McSweeney et al. 2012). More details about the physi-
cal parameter settings of the selected 5 members can be 
found in the papers of Murphy et al. (2004), Barnett et al. 
(2006), and Collins et al. (2006). In this study, we carry 
out the PRECIS ensemble simulations for the Province of 

Ontario (shown Fig. 1) in a continuous run from 1950 to 
2099 with a resolution of 25 km.

2.2  Ensemble validation

In this study, we use the 10-km gridded climate dataset pro-
vided by the National Land and Water Information Service 
(NLWIS), Agriculture and Agri-Food, Canada to validate 
the capability of PRECIS ensemble simulations in repro-
ducing the observed precipitation of current climate in 
the context of Ontario. The NLWIS dataset is interpolated 
from daily Environment Canada climate station observa-
tions through a thin plate smoothing spline surface fitting 
method as implemented by ANUSPLIN V4.3 (NLWIS 
2007). Observations from the NLWIS dataset are available 
for the period of 1961–2003, here we extract the data for 
1961–1990 (hereinafter referred to as baseline period) to 
represent the observations of current climate. The NLWIS 
dataset is regridded to the 25-km grids specified by the 
PRECIS model such that the validation and undermen-
tioned probabilistic analysis can be conducted at the same 
spatial resolution.

Instead of comparing each member of the ensemble with 
the NLWIS dataset, we calculate the difference between 
ensemble projections and observations (denoted as D) 
to measure the ensemble performance in capturing the 
observed precipitation of current climate, as follows:

where Pobs indicates the observed precipitation for current 
climate which can be derived from the NLWIS dataset, Pmin 
and Pmax represent the minimum and maximum precipita-
tion simulated by the PRECIS ensemble. Positive values 
of D indicate overestimation to the observed precipitation 
while negative values mean underestimation.

2.3  Probabilistic projections of precipitation

Ensemble projections of future climate change are usu-
ally presented in a probabilistic way based upon a variety 
of statistical methods (e.g., Giorgi and Mearns 2002, 2003; 
Tebaldi et al. 2005), such that more helpful information 
can be obtained reasonably for supporting climate change 
impact assessment and the subsequent policy making. Each 
possible outcome of future climate change will come with a 
specific level of occurrence (i.e., probability), it thus allows 
for planning appropriate adaptation strategies in advance 
by balancing the tradeoff between adapting costs and 
potential damages of climate change for a specific region 

(1)D =











Pmin−Pobs
Pobs

× 100% if Pobs < Pmin

0 if Pmin ≤ Pobs ≤ Pmax
Pmax−Pobs

Pobs
× 100% if Pobs > Pmax

http://www.metoffice.gov.uk/precis/qump
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or community at different probabilistic levels. In order to 
synthesize the PRECIS ensemble simulations and interpret 
them into policy-relevant information, here we introduce 
a Bayesian hierarchical model (Wang et al. 2014b) to help 
develop probabilistic projections of annual and seasonal 
precipitation over Ontario. In detail, future precipitation 
scenarios (denoted as Pfut) can be calculated by: 

where Δpro means the projected percentage change in 
30-year mean annual or seasonal precipitation at a given 
grid cell by the PRECIS ensemble simulations. Note that 
Pobs and Δpro will be dealt with in a grid-by-grid fashion 
such that future precipitation projections for all grid cells 
over Ontario can be developed. We regard Δpro as a random 
variable because it is unknown or uncertain at this stage. 
Thus, Δpro can be estimated by the difference between the 
true value of precipitation for future climate (denoted as ν) 
and that of current climate (denoted as μ), as follows:

(2)Pfut = Pobs × (1+�pro)

(3)�pro =
ν − µ

µ
× 100%

where ν and μ are treated as random variables with uniform 
prior distributions on the real line (i.e., [0, +∞]). Posterior 
distributions for ν and μ can be derived through Bayesian 
inference theory. Assumptions on the non-informative pri-
ors of all unknown parameters and the derivation of their 
posteriors are detailed in the paper of Wang et al. (2014b). 
The posterior distributions for ν and μ are expressed as 
follows:

where n means the total number of members in the PRE-
CIS ensemble (i.e., n = 5); xi and yi represent the simu-
lated precipitation for current and future climate by the ith 
PRECIS run; x0 indicates the biased observations of pre-
cipitation for current climate with consideration of random 
errors and systematic errors due to different measurement 

(4)

µ ∼ N

(

∑n
i=1

[

�ixi − θβ�i(yi − ν − βxi)
]

+ �0x0

�0 +
∑n

i=1 �i

(

1+ θβ2
) ,

1

�0 +
∑n

i=1 �i

(

1+ θβ2
)

)

(5)ν ∼ N

(

∑n
i=1 �i

[

yi − β(xi − µ)
]

∑n
i=1 �i

,
1

θ
∑n

i=1 �i

)

Fig. 1  Elevation distribution of 
the study area
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platforms and practices (Wang et al. 2014b). The remain-
ing parameters (i.e., λ0, λi, β, θ) are used to reflect vari-
ous uncertainties associated with the PRECIS ensemble 
simulations, and their definitions are detailed in the paper 
of Wang et al. (2014b). An empirical estimate of the poste-
rior distribution for Δpro is obtained through a Gibbs-based 
Markov chain Monte Carlo (MCMC) implementation to 
the proposed model (Wang et al. 2014b), thus the proba-
bilistic precipitation scenarios (i.e., Pfut) can be generated 
according to Eq. (2).

2.4  Interpretation of probabilistic projections

Due to our limited knowledge of the climate system and 
the resulting imperfectness of climate models, we can give 
only plausible outcomes for future climate. That is why we 
develop probabilistic projections by assigning a probabil-
ity to each possible outcome for future climate, instead of 
giving a single answer, to help with making robust adapta-
tion decisions (Murphy et al. 2009). Instead of providing 
an absolute probability to describe the occurrence of each 
possible outcome, we use the cumulative distribution func-
tion (CDF) in this study to define the probability of future 
projections of precipitation being less than or greater than 
a given amount. Specifically, we use a cumulative prob-
ability of 90 % to describe probabilistic projections by say-
ing that the projected precipitation is very likely to be less 
than or very unlikely to be greater than a given value; we 

use a cumulative probability of 10 % to indicate very likely 
to be greater than or very unlikely to be less than; and we 
regard the value with a cumulative probability of 50 % as 
the central estimate of future projections (also known as the 
median of the distribution). For convenience, we use the 
term of probability rather than cumulative probability in the 
rest of this paper.

3  Results

3.1  Validation of the PRECIS ensemble

To validate the capability of the PRECIS ensemble in cap-
turing the spatial patterns of precipitation over Ontario, we 
extract the simulated annual and seasonal precipitation in 
the baseline period from the five member runs and calculate 
their differences from the observations according to Eq. (1). 
Figure 2 shows the difference map of annual precipita-
tion. It is clear that most of grid cells within the domain of 
Ontario present little differences (ranging between −10 and 
10 %) from the observations, while the remainder are likely 
to manifest positive differences higher than 10 %. The dif-
ferences in annual precipitation at all grid cells also dem-
onstrate a slight but still distinguishable spatial distribu-
tion along with the latitude. Specifically, most of grid cells 
in the south show negative differences within [−10, 0] % 
while the grid cells in the north are largely with positive 

Fig. 2  Difference between the 
simulated annual precipitation 
and the observed one for the 
baseline period
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differences varying within [0, 20] %. This may suggest that 
the PRECIS ensemble is likely to slightly underestimate 
the observed annual precipitation in the south but it tends 
to generate more precipitation in the north. Considering 
that the geographical conditions (e.g., topography and lake 
boundaries) of the study area may play a critical role in 
regulating the local precipitation (Gula and Peltier 2012), 
this may further indicate that the PRECIS model itself per-
forms poor in simulating the precipitation over the regions 
with large bodies of water and inland seas. To further ana-
lyze the magnitude of differences in annual precipitation 
over all grid cells, we draw a frequency histogram of these 
differences (shown in Fig. 3). It can be found that the total 
percent of grid cells with their differences within [−2, 2] % 
is higher than 60 % (i.e., 52.9 % for the interval of [−2, 
0] % and 7.9 % for [0, 2] %), while grid cells with differ-
ences within [2, 10] % account for at least another 20 % 
of the total. This confirms that the PRECIS ensemble per-
forms very well in simulating the observed annual precipi-
tation over Ontario.

Similarly, we further validate the performance of the 
PRECIS ensemble in simulating the observed seasonal 
precipitation over Ontario. The maps of difference in sea-
sonal precipitation are shown in Fig. 4 and the correspond-
ing frequency histograms are presented Fig. 5, respectively. 
It is interesting to find that the PRECIS ensemble is not 
always showing good performance in hindcasting seasonal 
precipitation although it is generally capable of capturing 
the observed annual precipitation over Ontario. In detail, 

the ensemble shows reasonable performance in simulat-
ing winter, summer, and autumn precipitation but its per-
formance in spring precipitation is relatively poor (i.e., a 
great number of grid cells shows positive differences higher 
than 10 %). The frequency histogram for spring precipita-
tion further confirms its poor performance because the grid 
cells with differences within [−10, 10] % only accounts 
for ~20 % of the total while the remaining grid cells are all 
showing positive differences greater than 10 %. However, 
the overestimation in spring precipitation appears to be off-
set by slight negative biases in the other seasons. In other 
words, the overwhelming majority of grids cells are show-
ing negative differences within [−2, 0] % in the other sea-
sons (i.e., 64.9 % in winter, 85.4 % in summer, and 63.4 % 
in autumn). The negative differences in these three seasons 
are likely to balance the positive bias in spring precipita-
tion, and thus enabling the PRECIS ensemble capable of 
capturing the observed annual precipitation. 

3.2  Projections of precipitation at major cities

Probabilistic projections of precipitation at all grid cells 
over Ontario in the twenty-first century are divided into 
three 30-year periods: 2020–2049 (or 2030 s), 2040–2069 
(or 2050 s), and 2070–2099 (or 2080 s), to help understand 
the near-term and long-term outcomes of precipitation in 
the context of Ontario due to global warming. Here we first 
analyze future precipitation projections for 17 major cities 
which are geographically distributed across the landmass 

Fig. 3  Frequency histogram 
of difference between the 
simulated annual precipitation 
and the observed one for the 
baseline period. We split the 
differences in precipitation into 
50 intervals from −50 to 50 % 
(each interval with a length of 
2 %). The frequency of each 
interval is calculated as the 
total number of grid cells with 
their differences falling within 
the interval. The corresponding 
percent of each interval is cal-
culated and only those intervals 
with percent greater than 5 % 
are labeled (above the bar)
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of Ontario (see Fig. 1). Figure 6 shows the probability dis-
tributions of annual precipitation at these major cities in 
2030, 2050, and 2080 s. Every city presents distinct prob-
ability distributions for the three periods from others. For 
example, the mean of probability distribution for annual 
precipitation in Toronto is likely to increase from ~890 mm 
in 2030 s to ~990 mm in 2050 s, and then would decrease 
significantly from 2050 to 2080 s (as low as ~860 mm); 
meanwhile, its spread would notably reduce in 2050 s but 
no apparent change is projected for 2080 s in comparison 
to 2030 s. Similar patterns in the mean of the distribution 
(i.e., increasing in 2050 s and decreasing in 2080 s) are also 
reported in Ottawa, Kingston, and Sandy Lake, but these 
cities are unlikely to suffer obvious changes in the variation 
of the distribution. Although it is difficult to identify a gen-
eralized pattern to summary the probability distributions at 
all cities, it seems that the projections in 2080 s are likely 
to have the highest uncertainty (represented by the widely-
spread distributions at most of the stations in Fig. 6). We 
also generate the plots of among-member spread using 
the original outputs of the PRECIS ensemble simulations 
to help understand the uncertainties caused by different 
boundary conditions. Readers may refer to Figures S1, S2, 
and S3 in the Supplementary Material for more details.

Instead of comparing the probability distributions in 
annual precipitation among three future periods (i.e., 2030, 
2050, and 2080 s), we calculate the central estimate of each 

distribution for all future periods and compare it to the 
observed annual precipitation in the baseline period. This 
is to help understand the most likely outcomes of annual 
precipitation in each future period and the corresponding 
changes relative to the baseline period. Figure 7 shows the 
likely trends in annual precipitation at major cities from 
2030 to 2080 s relative to the baseline period. Although 
there is unlikely to be a continuous increase in annual pre-
cipitation from 2030 to 2080 s, we find that the vast major-
ity of cities are likely to experience an increase in annual 
precipitation in three future periods in comparison to the 
baseline observations. For example, annual precipitation in 
Ottawa is projected to be 1017 mm in 2030 s and would 
rise up to 1084 mm in 2050 s, while in 2080 s it is likely 
to drop below the level in 2030 s but it is still greater than 
the observed precipitation in the baseline period by 8 %. 
Negative changes in precipitation are projected in the cit-
ies of Owen Sound and Sudbury for 2030 and 2050 s only, 
but their annual precipitation is likely to increase signifi-
cantly in 2080 s (by 38 % in Owen Sound and 12 % in Sud-
bury). This may suggest that the whole province of Ontario 
is likely to gain more annual precipitation throughout the 
twenty-first century in response to global warming.

Probability distributions of seasonal precipitation at 
major cities for three future periods are also developed 
to help understand the temporal patterns in their means 
and variations (shown in Figs. 8, 9, 10, 11). Similar to 

Fig. 4  Difference between the 
simulated seasonal precipitation 
and the observed one for the 
baseline period
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the variability in annual precipitation distribution, each 
city presents distinct patterns from others in terms of 
the mean and variation of seasonal precipitation dis-
tribution. Furthermore, the distribution pattern in each 
season for one city is obviously different from its pat-
terns in other seasons. For example, the distribution 
of winter precipitation in Toronto is likely to suffer a 
noteworthy jump in its mean from 2030 to 2050 s but 
only a slight increase is projected from 2050 to 2080 s; 
meanwhile, its variation is likely to be slightly enlarged 
from 2030 to 2080 s. By contrast, the distribution of 
summer precipitation in Toronto is projected to suffer 
a completely reversed pattern in its mean (i.e., a con-
tinuous decrease is reported from 2030 to 2080 s); in 
the meantime, its spread is likely to be slightly shrunk 
from 2030 to 2050 s but would be considerably widened 
afterwards.   

To further analyze the plausible outcomes of seasonal 
precipitation at major cities, we calculate the central 

estimates in 2030, 2050, and 2080 s from their seasonal 
precipitation distributions and compare them with the 
observations in the baseline period. The results are shown 
in Table 1. We also calculate the percentage changes in 
the central estimates of seasonal and annual precipitation 
at major cities in 2030, 2050, and 2080 s relative to the 
baseline period. Table 2 shows the calculated changes for 
each city and the average changes for all major cities. It 
seems that the most significant changes in seasonal pre-
cipitation are projected in winter. For example, the win-
ter precipitation in Toronto would be 225 mm in 2030 s, 
259 mm in 2050 s, and 262 mm in 2080 s which are 
apparently above the average level (i.e., 173 mm) in the 
baseline period by 30.2, 49.6, and 51.5 %, respectively. 
Similarly, a large number of cities (e.g., Windsor, Moose 
Factory, Sandy Lake, and Fort Severn) are likely to suf-
fer considerable increases in winter precipitation in three 
future periods, especially for 2080 s when the potential 
changes would be greater than 40 % and can be as high as 

Fig. 5  Frequency histograms of difference between the simulated 
seasonal precipitation and the observed one for the baseline period. 
The differences in seasonal precipitation are split into a number of 
equally-wide intervals (each interval with a length of 2 %). The fre-

quency of each interval is calculated as the total number of grid cells 
with their differences falling within the interval. The corresponding 
percent of each interval is calculated and only those intervals with 
percent greater than 4.5 % are labeled (above the bar)
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62.1 %. Even though negative changes in winter precipita-
tion are also anticipated in a few cities (e.g., Thunder Bay 
and Owen Sound), the average changes in winter precipi-
tation for three future periods are still projected to increase 
significantly: by 11.2 % in 2030 s, 17.4 % in 2050 s, and 
26.4 % in 2080 s relative to the baseline period. Likewise, 

the spring precipitation at most of the cities is likely to 
increase for three future periods, leading to an average 
change of 7.8 % in 2030 s, and 15.8 % in 2050 s, and 
9.3 % in 2080 s. However, the summer precipitation at 
these cities is likely to decrease by 7.7 % on average to the 
end of this century although a slight increase (by 4.5 % on 

Fig. 6  Probability distributions of mean annual precipitation for future periods at major cities
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average) is projected in the next few decades. It seems that 
the majority of these cities would receive more precipita-
tion in autumn (by 10.2 % on average) in the long run till 
to the end of this century, while the magnitude of changes 

in 2030 and 2050 s is very small on average (by -0.7 % and 
1.6 %, respectively). As the selected cities in this study are 
largely evenly distributed within the Province of Ontario, it 
is reasonable to speculate that similar changes in seasonal 

Fig. 7  Likely changes in and plausible outcomes of mean annual pre-
cipitation for future periods at major cities. Note that the values for 
three future periods (i.e., 2030, 2050, and 2080 s) are the central esti-
mates (i.e., at 50 % probability) of their probabilistic projections. The 

values in parentheses indicate percentage changes in precipitation for 
three future periods relative to the baseline period. The sign of “+” 
means increase and “−” indicates decrease in annual precipitation, 
respectively
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precipitation are likely to be anticipated for the entire 
province. In other words, the whole province is likely to 
receive more precipitation in winter, spring, and autumn 
throughout this century while summer precipitation tends 
to slightly increase in 2030 s but would decrease gradually 
afterwards. However, because the magnitude of projected 

decrease in summer precipitation is relatively small in 
comparison with the anticipated increases in other three 
seasons, the annual precipitation over the entire province 
is likely to suffer a progressive increase throughout this 
century (by 7.0 % in 2030 s, 9.5 % in 2050 s, and 12.6 % 
in 2080 s). Generally speaking, the mechanism behind the 

Fig. 8  Probability distribution of mean winter precipitation in 2030, 2050, and 2080 s
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projected increases in precipitation is that warming tem-
perature would lead to more evaporation and intensify 
the water cycle at regional scales, and thus result in more 
precipitation. This mechanism has already been examined 
and reported in many literatures (e.g., Seager et al. 2012; 
Stocker et al. 2014; Trenberth 2011; Wentz et al. 2007). 

Such a mechanism is particularly true for the Province of 
Ontario which is next to the Great Lakes in the south and 
to the Hudson Bay in the north (as shown in Fig. 1). These 
large bodies of water apparently play important roles in 
regulating the precipitation pattern over Ontario (Gula and 
Peltier 2012). 

Fig. 9  Probability distribution of mean spring precipitation in 2030, 2050, and 2080 s
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3.3  Projections of precipitation over Ontario

Following the analyses on precipitation projections at major 
cities, here we present the developed probabilistic pro-
jections for the Province of Ontario. Figure 12 shows the 
projections of annual precipitation for three future periods 

at three typical probability levels (i.e., 10, 50, and 90 %). 
There is an apparent gradually increasing pattern along 
with the latitude for annual precipitation. For example, 
the central estimates of annual precipitation in the north 
is projected to be mostly varying within [500, 700] mm in 
2030 s, while in the middle and the south the medians of 

Fig. 10  Probability distribution of mean summer precipitation in 2030, 2050, and 2080 s
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annual precipitations in the same period would largely be 
[700, 900] mm and [900, 1100] mm, respectively. Besides, 
it appears that such a meridionally distributed pattern in 
annual precipitation across the entire province is unlikely 
to change too much in 2050 and 2080 s, although evident 
spatial variations in annual precipitation are still projected 

at local scales (e.g., in the south end). As for the temporal 
trend in annual precipitation, it is clear that the whole prov-
ince of Ontario would suffer a continuous increase in its 
annual precipitation from 2030 to 2080 s because the areas 
with annual precipitation less than 600 mm are gradually 
reduced after 2030 s. However, we should note that slight 

Fig. 11  Probability distribution of mean autumn precipitation in 2030, 2050, and 2080 s
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decreases are also likely to occur in some southern regions 
with their annual precipitation greater than 1000 mm.

Figure 13 shows the central estimates of seasonal 
precipitation over Ontario for three future periods, while 
Fig. 14 presents the frequency histograms of seasonal 
precipitation in future periods for all grid cells within 
the domain of Ontario. Similar meridionally-increasing 
patterns in seasonal precipitation (i.e., less in the north 
and more in the south) are also projected for winter, 
spring, and autumn, apart from summer when no obvi-
ous spatial pattern is reported. Besides, there are clear 
temporally-increasing trends throughout this century 
for winter, spring, and autumn precipitation. For exam-
ple, in the north, the areas with winter precipitation less 
than 110 mm or spring precipitation less than 90 mm 
are apparently reduced from 2030 to 2080 s; while the 
southern areas with autumn precipitation greater than 

270 mm are evidently increased. We also notice that 
there is likely to be a sharp increase in spring precipita-
tion from [210, 290] mm in 2030 s to [250, 330] mm in 
2050 s in most areas of south Ontario but afterwards it 
would drop to [190, 250] mm in 2080 s. By contrast, the 
central estimates of summer precipitation over Ontario 
are likely to decrease slightly from 2030 to 2080 s. This 
is especially true in the middle-west where summer 
precipitation would decline gradually from [250, 290] 
mm in 2030 s to [230, 270] mm in 2080 s. However, the 
projected decrease in summer precipitation is unlikely 
to offset the evident increases in other three seasons 
which consequently lead to an overall increasing trend 
in annual precipitation over Ontario throughout the 
twenty-first century. 

To further investigate the uncertainties involved in the 
probabilistic projections of precipitation in the context 

Fig. 12  Projections of mean annual precipitation over Ontario in 2030, 2050, and 2080 s
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of Ontario, we here introduce the degree of uncertainty 
which is defined as the width or spread of the most likely 
range bounded by the estimates at 10 and 90 % probabil-
ity. The unit of the degree of uncertainty is mm. Accord-
ingly, the wider the range is, the more uncertain or the 
less reliable the projections are. Figure 15 shows the 
maps of degree of uncertainty for annual and seasonal 
precipitation for three future periods. For the seasonal 
precipitation, we notice that the projections for winter, 

summer, and autumn present relatively small degrees of 
uncertainty (mostly ranging within [0, 10] mm) while 
the spring projections manifest high degrees of uncer-
tainty which may vary between 0 and 50 mm. This is 
especially true in the middle-west where the degree of 
uncertainty for spring precipitation would be as high 
as [25, 50] mm. This may suggest that the projections 
for spring precipitation obtained through the PRECIS 
ensemble are less reliable than those for the other three 

Fig. 13  Projections of seasonal precipitation over Ontario in 2030, 2050, and 2080 s (50 % probability)
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seasons. Consequently, this will further result in more 
uncertainties in annual precipitation projections whose 
degrees of uncertainty are mainly varying between 0 and 
20 mm.

4  Conclusions

In this study, high-resolution probabilistic projections of 
precipitation were developed for the Province of Ontario 
with the purpose of investigating how global warming 
would affect the local precipitation at major cities and 
across the entire province. We first performed five-member 
RCM ensemble simulations using the PRECIS regional 
climate modeling system. The PRECIS ensemble simula-
tions were driven by a set of boundary conditions from a 

HadCM3-based perturbed-physics ensemble under A1B 
emission scenario. Changes in precipitation projected by 
each member of the ensemble were then calculated and fed 
into a Bayesian hierarchical model to generate probabilis-
tic precipitation changes at 25 km grid point scales. Fol-
lowing that, we developed reliable precipitation projections 
throughout the twenty-first century for the entire prov-
ince by applying the probabilistic changes to the observed 
precipitation.

Simulations of annual and seasonal precipitation for the 
baseline period were compared to the observations to vali-
date the capability of the PRECIS ensemble in capturing 
the spatial patterns of precipitation over Ontario. The vali-
dation results showed that the PRECIS ensemble performs 
very well in simulating the observed annual precipitation 
and seasonal precipitation in winter, summer, and autumn 

Fig. 14  Frequency histograms of seasonal precipitation for all grid cells in 2030, 2050, and 2080 s (50 % probability)
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Fig. 15  Maps of degree of uncertainty for annual and seasonal precipitation projections
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while its performance in hindcasting spring precipitation is 
relatively poor. The ensemble simulations were then syn-
thesized through a Bayesian hierarchical model to develop 
probabilistic projections of precipitation with considera-
tion of some uncertain parameters involved in the regional 
climate modeling process. The results showed that the 
vast majority of cities are likely to gain positive changes 
in annual precipitation in 2030, 2050, and 2080 s in com-
parison to the observations in the baseline period. This 
may suggest that the whole province of Ontario is likely to 
receive more annual precipitation throughout the twenty-
first century in response to global warming. Our analyses 
on the projections of seasonal precipitation further showed 
that the entire province is likely to receive more precipi-
tation in winter, spring, and autumn throughout this cen-
tury while summer precipitation is only likely to increase 
slightly in 2030 s but would decrease gradually afterwards. 
However, because the magnitude of projected decreases in 
summer precipitation is relatively small in comparison with 
the anticipated increases in other three seasons, the annual 
precipitation over Ontario is likely to suffer a progressive 
increase throughout the twenty-first century (by 7.0 % in 
2030 s, 9.5 % in 2050 s, and 12.6 % in 2080 s). The degree 
of uncertainty for precipitation projections was also ana-
lyzed in this study. The results suggest that future changes 
in spring precipitation show higher degree of uncertainty 
than other seasons, resulting in more uncertainties in 
annual precipitation projections.

It is interesting to find that the PRECIS model performs 
poorly in simulating spring precipitation over Ontario 
while it does show good performance in capturing pre-
cipitation of other three seasons. Considering that the 
observed spring temperature of Ontario is usually floating 
up or down around 0 °C (see Figure S4 in the Supplemen-
tary Material) while temperature in other three seasons is 
either lower than 0 °C (i.e., winter) or greater than 0 °C 
(i.e., summer and autumn), the possible reasons behind 
the apparent bias in spring precipitation might be: (1) the 
PRECIS model cannot well determine the phase of the 
precipitation (i.e., snowfall or rainfall) while temperature 
is fluctuating around 0 °C; (2) the PRECIS model cannot 
well simulate the physics of frozen soil (or permafrost) in 
northern Ontario (Tam 2009) when temperature is fluctu-
ating around 0 °C. However, these are not necessarily the 
real reasons because there are many physical processes 
and/or parameters may directly or indirectly affect the 
simulated precipitation. Future research efforts through 
sensitivity experiments are still required to investigate the 
real causes behind poor performance in spring precipita-
tion. Here we should note that to minimize the effects of 
the modeling bias on the reliability of future precipitation 
projections, we only used the ensemble simulations to 
calculate the percentage changes in precipitation. Future 

precipitation projections were developed by applying the 
projected changes to the observed precipitation for the 
current climate of Ontario. In this sense, the developed 
probabilistic precipitation projections in this study were 
bias-corrected and thus can provide helpful information 
for assessing the potential effects of climate change in the 
context of Ontario.
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